Roll No.

72603

M.Sc. Physics 1st Sem. Examination-December, 2014

Quantum Mechanics-I

Paper: III

Time: 3 hours Max. Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard will be entertained after the examination.

Note: Attempt five questions in all, selecting one question from each Unit. Question No. 1 is compulsory.

1. (a) Check the Hermicity of operators:

(i)
$$i(A + A^{+})$$

(b) Prove:

(i)
$$\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = 1$$

(ii)
$$\sigma_x \cdot \sigma_y \cdot \sigma_z = i$$

where o's are Pauli spin matrices.

72603-1250-(P-4)(Q-9)(14) (1) [Turn Over

- (c) Find expectation value of kinetic energy i.e. <K.E.> in ground state of hydrogen atom.
- (d) Write first order energy correction for small perturbation.

UNIT - I

- 2. (a) Define a Hermitian operator and show that Hermitian operators have real eigen values.
 - (b) Show that Hamiltonian operator is a Hermitian operator.

missup and antender and

- (c) If $D|m\rangle = |b\rangle$, then show that $\langle b| = \langle m|D^+$.
- 3. (a) Show that commutation relation between operators remain invariant under unitary transformation.

	(b)	Let $/\psi > = 3i/\phi_1 > -7i/\phi_2 >$ and	
		$/\chi > = -/\phi_1 > + 2i/\phi_2 >$	
		where $/\phi_1$ and $/\phi_2$ are orthogonal.	
		Calculate:	
		(i) $/\psi + \chi > $ and $<\Psi + \chi $ and	3
		(ii) $\langle \Psi \chi \rangle$ and $\langle \chi \Psi \rangle$	5
		Are they equal?	
		W. W. S.	
		UNIT – II	
4.	(a)	Establish angular momentum matrices	3
		J_x , J_y , J_z , J_+ , J and J^2 for $j = 3/2$.	2
		ar the eigen functions and eigen w	
	(b)	Evaluate:	-
		(i) [Lx, Lz] and	
		(ii) [σ _z , σ ₊].	
		vinist naturburea	
5.	De	fine raising and lowering operators J+ and	1
	J_ :	and calculate their eigen values.	5
726	03-12	50-(P-4)(Q-9)(14) (3) [Turn Ove	r

	(b)	Let $/\psi > = 3i/\phi_1 > -7i/\phi_2 >$ and	
		$/\chi > = -/\phi_1 > + 2i/\phi_2 >$	
		where $/\phi_1$ and $/\phi_2$ are orthogonal.	
		Calculate:	
. •		(i) $/\psi + \chi > $ and $<\Psi + \chi $ and	3
		(ii) $\langle \Psi \chi \rangle$ and $\langle \chi \Psi \rangle$	5
		Are they equal?	
		or company	
	EVE	UNIT – II	
4.	(a)	Establish angular momentum matrice	s
	1170)	J_x , J_y , J_z , J_+ , J and J^2 for $j = 3/2$.	2
	euul	and design the energy and the second of the second	
	(b)	Evaluate:	4
		(i) [Lx, Lz] and	
		(ii) [σ _z , σ ₊].	
		what was transfer and	
5.	De	fine raising and lowering operators J. and	d
	J_ :	and calculate their eigen values.	6
726	03-12	50-(P-4)(Q-9)(14) (3) [Turn Ove	er

UNIT - III

- 6. Solve the problem of a three dimensional isotropic harmonic oscillator using Cartesian coordinates. What is the significance of zero point energy? 16
- 7. Find out eigen wave functions of a hydrogen 16 atom.

UNIT - IV

- The Hamiltonian of a given physical system is of the form $H = H_0 + H'$, where H' is small perturbation to Ho. Using time independent perturbation theory, calculate the corrections for the eigen functions and eigen values in the second order approximations. 16
- 9. What is Stark effect? Explain Stark effect in normal hydrogen atom using stationary state 16 perturbation theory.